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Uncertainty-guided Boundary Learning for
Imbalanced Social Event Detection

Jiaqian Ren, Hao Peng, Lei Jiang, Zhiwei Liu, Jia Wu, Zhengtao Yu, Philip S. Yu, Fellow, IEEE

Abstract—Real-world social events typically exhibit a severe class-imbalance distribution, which makes the trained detection model
encounter a serious generalization challenge. Most studies solve this problem from the frequency perspective and emphasize the
representation or classifier learning for tail classes. While in our observation, compared to the rarity of classes, the calibrated
uncertainty estimated from well-trained evidential deep learning networks better reflects model performance. To this end, we propose a
novel uncertainty-guided class imbalance learning framework - UCLSED , and its variant - UCL-ECSED , for imbalanced social event
detection tasks. We aim to improve the overall model performance by enhancing model generalization to those uncertain classes.
Considering performance degradation usually comes from misclassifying samples as their confusing neighboring classes, we focus on
boundary learning in latent space and classifier learning with high-quality uncertainty estimation. First, we design a novel
uncertainty-guided contrastive learning loss, namely UCL and its variant - UCL-EC, to manipulate distinguishable representation
distribution for imbalanced data. During training, they force all classes, especially uncertain ones, to adaptively adjust a clear separable
boundary in the feature space. Second, to obtain more robust and accurate class uncertainty, we combine the results of multi-view
evidential classifiers via the Dempster-Shafer theory under the supervision of an additional calibration method. We conduct
experiments on three severely imbalanced social event datasets including Events2012 100, Events2018 100, and CrisisLexT 7. Our
model significantly improves social event representation and classification tasks in almost all classes, especially those uncertain ones.

Index Terms—Social event detection, evidential deep learning, demperster-shafer theory, imbalanced data
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1 INTRODUCTION

Social event detection (SED) aims to correctly categorize
the numerous social messages to detect the occurrences of
events. Due to its wide application, recent years have wit-
nessed lots of research on the detection methods [1], [2], [3].
However, few works investigate the severe data distribution
imbalance problem in SED. Events have varying recognition
difficulty levels because of the following two reasons. First,
in the real-world scenario, event data typically exhibit a
long-tail distribution with few head-dominant event classes
and many low-frequent tail classes. Lacking sufficient train-
ing samples, the trained model’s detection abilities for most
events are data-sensitive, which means they are easily af-
fected by per-class sample qualities. Second, some events
may share semantically similar contexts with other events.
This semantic-level overlapping issue also increases the
complexity of event detection.

Early approaches mainly focus on learning a balanced
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classifier to tackle the data imbalance issue. Two common
strategies are: 1) data re-sampling [4], [5], [6], whose core
idea is to increase the numbers of samples in the tail classes
or decrease the samples of those head classes; and 2) loss
reweighting [7], [8], [9], [10], in which weights assigning
to tail classes are larger. Though unbiased classifiers can
be obtained by applying both aforementioned strategies,
some recent works [11], [12], [13], [14] argue that they are
unable to explicitly control the latent representation space,
and therefore, are sub-optimal. Inspired by the intuition
that qualitative features improve the classification, a recent
line of work [15], [16], [17], [18], [19] focuses on learning
more separable representations for imbalanced data. For
example, authors in [17] design a hybrid framework with
a supervised contrastive learning branch for representation
regularization and a classifier branch for bias eliminating.
Later, some approaches [18], [19] modify the original con-
trastive learning loss under the guidance of class frequency
to further improve representation learning for imbalanced
data. For example, BCL [19] incorporates class-averaging
and class-complement strategies to strengthen tail classes.
DRO-LT [20] learns high-quality representations based on
distributional robustness optimization. However, as the dif-
ficulty level of event recognition is also affected by class
overlapping, the class frequency may be an insufficient indi-
cator to model performance. Our previous work [21] shows
that evidential uncertainty estimated from well-trained EDL
neural networks highly correlates with performance error.
This correlation is shown in Fig. 1. Compared to class
frequency, the predicted uncertainty better indicates model
generalization capacity. Therefore, in this paper, we explore
a new direction toward learning balanced and separable
representations under the guidance of uncertainty. The focus
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Fig. 1: Statistics of the estimated per-class uncertainty, per-class
error rate, the inverse of per-class number 1/n and the sqrt
of 1/n on the training sets of Events2012 100, Events2018 100,
and CrisisLexT 7, respectively.

shifts from tail classes to uncertain classes. We aim to im-
prove the overall model performance by improving learning
for those uncertain ones. To clarify, we also define uncertain
event classes as events that are difficult to recognize due to
the lack of labeled data or excessive noise from semantically
similar events. Our goal is to propose a unified framework
that combines the learning of uncertainty in the classifica-
tion head with the uncertainty-guided boundary adjustment
in the representation head.

To achieve this goal, in this work, we propose a novel
uncertainty-guided class imbalance learning framework,
namely UCLSED, as well as its variant - UCL-ECSED, for
imbalanced social event detection tasks. It in essence works
as a representation regularization technique guided by class-
dependent uncertainty. The core of our framework is to
make adaptive and automatic boundary adjustments in the
latent space. The blurry boundary gets separated by design-
ing a loss that assigns larger margins in the latent space
for those more uncertain classes. Meanwhile, given that our
assumption roots in high-quality uncertainty estimation,
we also emphasize robust and accurate evidential classifier
learning. Specifically, we design a novel uncertainty-guided
contrastive learning loss (UCL and UCL-EC) to manipu-
late distinguishable representation distribution. To ensure
robustness, in the classification head, the final uncertainty
is calculated by combining multi-view results via Demp-
ster’s rule [22]. To ensure accuracy, an additional calibration
method is utilized to prevent uncertain true predictions and

certain false predictions.
We conduct extensive experiments on three imbalanced

event datasets to evaluate our model. Experimental results
show our method achieves great results in all classes, espe-
cially in those hard (uncertain) classes. This demonstrates
the superiority of our model. The code of this work is
publicly available at GitHub1.

2 RELATED WORK

Social Event Detection. Social event detection is a long-
standing and challenging task. First, distinct from the for-
mal texts that appeared on other occasions, text contents
in social networks are often restricted to be pretty short
and contain many informal expressions [23]. These char-
acteristics of social texts make the information extracted
from original semantic text mining technologies far from
satisfactory. Second, to depict an event, short social texts
usually contain rich social network attributes [24], such
as hashtags, timestamps, users, mentions, retweets, and
so on. It is difficult to incorporate these heterogeneous
attributes effectively. According to the utilized information,
social event detection approaches can be roughly divided
into three categories: content-based methods [25], [26], [27],
[28], [29], [30], attribute-based methods [31], [32], [33] and
content-attribute-combining methods [34], [35], [36], [37],
[38], [39], [23], [24], [21]. As for content-based methods, a
series of works make detection by analyzing text semantics.
This type of method typically builds on text representation
models such as Bag-of-words model [40], Word2Vec [41]
and Bert [42] or topic models like LDA [43] to represent
social texts. Because the text contents are short, which makes
the captured information insufficient, some leverage multi-
task technologies to extend the original knowledge. For
example, authors in [28] utilize Deep Neural Networks to
jointly make event detection and summarization. Some even
incorporate information from external knowledge bases. As
for the line of attribute-based methods, many studies make
event detection by using important social attributes, such
as hashtags [32], mention [44], [45], retweet [46] and so on.
This kind of work ignores the text semantics and thus is
also insufficient. To grasp more comprehensive information,
there is a trend toward content-attribute-combining meth-
ods. They propose to integrate the content and multiple at-
tributes with fusion or graph models. Due to their powerful
expressiveness for graph data, in recent years, Graph Neural
Networks have attracted lots of attention in the social event
detection domain [47], [37], [38], [39], [23], [24], [48], [21],
[47]. These GNN-based detection methods build heteroge-
neous information networks to represent social event data.
Various attributes in social networks effectively complement
each other and play an independent role in text semantic
propagation and aggregation. For example, KPGNN [38]
utilizes users, keywords, and entity attributes to construct
an event message graph and then leverages inductive Graph
Attention Networks (GAT) to learn message representa-
tions. PP-GCN [37] utilizes multiple attributes by designing
sophisticated meta-paths and then uses Graph Convolu-
tional Networks (GCN) to obtain representations. Later,

1. https://github.com/RingBDStack/UCL SED

https://github.com/RingBDStack/UCL_SED
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some works leverage multi-view learning strategies to fur-
ther strengthen the feature learning process. MVGAN [24]
learns message features from both the semantic and tem-
poral views, then proposes an attention mechanism to fuse
them together. ETGNN [21] instead learns representations
from co-hashtag, co-entity and co-user views. Dempster-Shafer
Theory extracts shared beliefs to resist noise and make the
final decision more robust. Our work builds on ETGNN
and makes a modification in the representation learning
process to adapt to imbalanced data. Besides, we also add
an uncertainty calibration method to ensure the accuracy of
the estimated uncertainty.

Long-tail Recognition. Real-world data such as events,
images and objects usually follow a long-tail distribution,
which makes the trained model generalize badly. Early so-
lutions tend to solve this problem from two perspectives: (1)
modifying the training data through some data re-sampling
strategies [4], [5], [6], [49], [50], [51], [52], [53] and (2)
modifying the loss function with re-weighting strategy [7],
[8], [9], [10], [54] or margin modification strategy [55],
[56], [57]. Re-sampling approaches mainly consist of three
popular techniques, including over-sampling tail classes by
sample copying [49], [50], generating augmented samples
to supplement tail classes [6], [51], [52] and under-sampling
head classes by discarding part of data [53]. Despite the
good results, these three techniques face tail-class overfit-
ting, expensive cost, and model generalization problems,
respectively [49], [4]. Loss re-weighting approaches tailor
the loss function based on up-weighting the samples in
tail classes and down-weighting those in head classes. For
instance, works such as [58], [7] re-weight the loss functions
by the inverse of class frequencies. In the work [9], a held-
out evaluation set is utilized to optimize the weights to
samples. Authors in [54] leverage the difficulty level of
sample prediction, measured by the confidence score gap,
to rescale the cross-entropy loss. Also, there is an alternative
strategy to manipulate the classification loss margins. Some
works [55], [57] proposed encouraging larger logit margins
for rare classes and decreasing margins for head classes.

All the aforementioned methods focus on learning a
balanced classifier. While recently, some works [11], [12],
[14] explore decoupling the original classification learning
into two separate stages including representation learning
and classifier learning. According to their observation, the
learned representation with a balanced classifier (trained
by re-sampling and re-weighting methods) is sub-optimal.
Based on this observation, more and more works turn
to learn better representations from imbalanced data to
improve classification performance [59], [17], [19], [20],
[18]. Inspired by the great promise of contrastive learn-
ing [60], [61] in obtaining distinguishable representations,
researchers have investigated the potential of leveraging
contrastive learning loss to manipulate further perfor-
mance gain. SSP [59] leverages self-supervised and semi-
supervised contrastive learning to boost long-tailed learning
tasks. Authors in [17] design a hybrid framework with a
supervised contrastive learning branch for better represen-
tation and a classifier branch for bias elimination. Sharing
a similar framework, the work [19] introduces a novel BCL
loss in the representation learning branch to deal with the
domination of head classes. Based on distributional robust-

ness optimization, DRO-LT [20] explicitly seeks to improve
the quality of representations for tail classes. Authors in
[18] instead propose targeted supervised contrastive learn-
ing with a set of pre-defined feature distributions. Most
of these works modify the contrastive learning loss under
frequency guidance. However, according to our observation,
frequency is a worse indicator of model performance than
uncertainty. Our work leverages uncertainty to adaptively
adjust class boundary learning in the latent space. A similar
work to ours is [56], which links class imbalance problems
with Bayesian uncertainty estimates. However, it indirectly
models uncertainty through network weights, which is inef-
ficient. Besides, it utilizes uncertainty to adjust logit margins
instead of representation margins.

3 PRELIMINARY

3.1 Classification Task
The aim of the classification task is to learn a complicated
mapping function from an input space X to a target space
Y = {1, 2, ..., C}. Generally, the mapping function is com-
posed of two parts: an encoder model f which maps the
input to a latent space Z ∈ Rh, and a classifier g which
maps the latent space Z to the target space Y . In this
work, we leverage a modified contrastive loss to adjust the
latent space Z . We tend to improve the final classification
performance by making the learned representations more
distinguishable.

3.2 Temporal-aware GNN encoder
Graph neural networks are proposed for representation
learning on graph data [62], [63]. For each node on the
graph, a GNN encoder iteratively updates its representation
by combining information from its one-hop neighbors. In
this way, the learned representation contains graph struc-
tural and node attribute information and is more compre-
hensive. Typically, a GNN encoder layer comprises two
types of operation: feature transformation operation and
feature aggregation operation. Suppose the node represen-
tation of index i in the (l− 1)− th layer is denoted as hl−1

i ,
its updated representation in the next layer is computed as
follows:

h
(l)
i ← σ

(
Aggregator

∀j∈N (i)

(
Transformation

(
h
(l−1)
j

)))
, (1)

where N (i) represents the set of neighbor indices of node
i. Aggregator and Transformation are designed differently
in different GNN models. Since temporal information is
important in indicating events, we adopt the temporal-
aware GNN aggregator in our previous work [21] to in-
corporate temporal information into graph representation
learning. As for the transformation operation, we use the
simple linear trainable transformation. The specific layer-
wise propagation becomes:

hl
i ← σ

 ∑
j∈N (i)

aijWhl−1
j

 . (2)

Here W denotes the transformation matrix learned during
training. σ(·) is an activation function. Attention weight
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aij measures the temporal approximation between message
from node i and message from node j and is computed as
follows:

aij =
e−fc(hl

i)·|tj−ti|∑
j∈N (i) e

−fc(hl
i)·|tj−ti|

, (3)

where ti and tj are the publishing time of message i and
message j. |tj − ti| is the corresponding time interval that
can be counted in days, hours, minutes, etc. Here in this pa-
per, we counted in days. fc(·) represents a fully connection
layer. More details can be seen in [21].

3.3 Contrastive Learning
Contrastive learning imposes geometric constraints on the
sample representations to regulate the model. It follows a
simple principle of pulling the samples from the same class
together and pushing the samples from different classes
apart. We here introduce some variants of supervised con-
trastive learning loss which will facilitate the understanding
of our later modification.

Supervised contrastive loss [61]. Supervised contrastive
loss (SCL) utilizes label information to find samples within
the same class as the positive ones. Formally, in a batch B,
for an instance xi whose representation learnt by encoder f
is zi, supervised contrastive loss is written as:

LSCL(zi) = −
1

|{x+
i }|

∑
j∈{x+

i }

log
exp (S(zi, zj)/τ)∑

k∈B\{i} exp (S(zi, zk)/τ)
,

(4)
where {x+

i } denotes a subset of B that contains all samples
within the same class as xi. |{x+

i }| is the number of all
the positive samples in the batch B. τ is a temperature
parameter. S denotes a similarity metric function where
cosine similarity is often selected. Because cosine similarity
removes the effect of feature length and emphasizes angle
information, which further facilitates linear classification
thus making the training process more stable. To sum up,
SCL maximizes agreement between the anchor and all pos-
itive samples by contrasting against samples from other
classes. While simple and effective, this loss faces memory
issues [61].

Prototypical supervised contrastive loss [17]. Proto-
typical supervised contrastive (PSC) loss replaces specific
positive and negative samples with prototypes to tackle the
memory issue. In PSC, each sample is pulled close to the
prototype of its class and pushed away from prototypes
of other classes. Formally, suppose there is a sample xi

(representation is zi) whose label is yi, the PSC loss function
can be expressed as follows:

LPSC (zi) = − log
exp (S(zi · pyi

)/τ)∑C
c=1 exp (S(zi · pc)/τ)

, (5)

where pyi
is the prototype representation of class yi that

sample xi belongs to. The prototype representations are
learned during training.

4 THE PROPOSED MODEL

4.1 Overall Framework
We start with an overview of our uncertainty-guided class
imbalance learning framework UCLSED and UCL-ECSED

and provide the details in subsequent sections.

The overall framework is demonstrated in Fig. 2, built
on our previous work - ETGNN [21]. The aim of this paper
is to enhance imbalanced social event detection by learning
better representations such that the class boundaries are well
separated. With the observation that evidential uncertainty
well reflects model performance and the assumption that
model performance is highly correlated with the represen-
tation distribution, the key idea becomes using the pre-
dicted evidential uncertainty from the classifier to monitor
and adjust the representation distribution status during the
training process.

The detailed training process of UCLSED is depicted in
Algo. 1. Following [21], we first construct three view-specific
message graphs (co-hashtag, co-entity and co-user) by sim-
ply connecting messages sharing the same corresponding
element together. Then we utilize a temporal-aware GNN
encoder (also introduced in Sec. 3.2) to obtain the message
representations. The next steps are this paper’s two key
modules, which will be roughly introduced in the next
paragraph and detailed in the subsequent sections. Note
that UCL-ECSED is similar to UCLSED but different in
acquiring the prototypes. Considering the page limit, we
didn’t show the detailed algorithm of UCL-ECSED. But
readers can refer to Sec. 4.2.2 to see the concrete difference.

Two key modules in the framework are the representa-
tion adjustment module and the multi-view classifier mod-
ule. In the representation adjustment module, to ensure
class separability, we propose a novel uncertainty-guided
contrastive learning loss (i.e. UCL and UCL-EC) to assign
larger inter-class margins in the latent space for those
uncertain classes. In the multi-view classifier module, we
use Dempster-Shafer theory to combine the results from
the three single views. Meanwhile, considering uncertainty
plays an important role in representation adjustment and
classification making, an additional calibration constraint is
added to get better and more robust uncertainty estimations
and class predictions. Generally, in our work, representa-
tion, and classification learning are combined closely and
mutually promote each other. On one hand, the result from
classification learning works as an effective indicator to re-
flect the current representation distribution status. The rep-
resentations become more distinguishable by setting larger
margins for more uncertain classes. On the other hand,
in line with the property of intra-class compactness and
inter-class separability, the adjusted representation further
facilitates classification learning.

4.2 Representation Adjustment Module

4.2.1 Uncertainty-Guided Contrastive Learning Loss (UCL)

In this section, we introduce UCL in detail, an extension of
prototypical supervised contrastive loss. The key difference
lies in the setting of the class margin.

To facilitate understanding, we rewrite PSC loss as fol-
lows:

LPSC (zi) = log

1 + C∑
c=1,c ̸=yi

e∆yic
+S(zi,pc)−S(zi,pyi

)

 ,
∆yic = 0.

(6)
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Fig. 2: The architecture of the proposed uncertainty-guided class imbalance learning framework (UCLSED and UCL-ECSED).
The whole framework contains two modules: a) representation adjustment module, in which larger margins are assigned to
more uncertain classes to ensure class separability; b) multi-view classifier module, in which multi-view results are combined via
Dempster-Shafer theory with an additional calibration method to ensure robustness and accuracy.

For simplicity, we remove the temperature parameter τ .
With the parameter that controls class margin being set
to constant zero, PSC loss has a weak capacity to learn
separable representation distribution for imbalanced data.
While in practice, events are diverse and complex and have
highly imbalanced frequencies. All these properties make
different events face varying difficulty levels to be well-
represented and correctly classified. Concretely, if an event
is hard to be distinguished by a classification model (i.e., the
classification model is uncertain about its prediction), there
is a high probability that this event faces a blurry boundary
in the latent space and thus is easy to be misclassified. There-
fore, an adaptive and flexible regularization loss that sets
proper class-dependent margins is highly needed for better
representation distribution for imbalanced event data. For
events that are hard to distinguish, intuitively, we should
enlarge the margins of other events towards them. In other
words, the modified loss should push the distribution of
other events away from them to prevent misclassification.
To achieve that, we modify the original PSC loss with a
tunable margin controlled by uncertainty, turning into UCL
as follows:

LUCL (zi) = log

1 + C∑
c=1,c̸=yi

eβuyi
+S(zi,pc)−S(zi,pyi

)

 ,
(7)

where uyi represents the uncertainty value of class yi and
works as an effective indicator to reflect its current repre-
sentation distribution status. β is a positive hyperparameter.
The computation of uyi will be introduced in Sec. 4.3.

Comparison with the original PSC loss. The modified
UCL added with an additional positive value encourages a
larger margin between prototypes. Therefore, it simultane-
ously enhances the intra-class compactness and inter-class
discrepancy. Moreover, this loss can be considered as a soft
approximation to max(0, βuyi

+S(zi,pc)−S(zi,pyi
)), c =

argmaxc̸=yi
(S(zi,pc)). With the per-class margin being set

to be positively related to class uncertainty, this loss is class-
dependent. Meanwhile, the existence of the extra penalty
βuyi

forces even larger margins between S(zi,pyi
) and

S(zi,pc). Thus, events with large uncertainty are pushed
more away from other classes to avoid class overlapping. In
this way, the representation boundary of each class can be
adjusted automatically and properly.

4.2.2 Uncertainty-Guided Contrastive Learning Loss With
Estimated Centroids (UCL-EC)
A variant of UCL with estimated centroids (UCL-EC). As
seen in Algo. 1, the prototypes in the UCL are learned dur-
ing training and updated in each batch. Considering sam-
ples in different batches vary a lot, the learned prototypes
may fluctuate greatly in different batches. This training in-
stability problem is particularly severe for imbalanced data,
where most classes are minority classes and are likely to
be sampled in different batches. We replaced the prototypes
with the global class centroids calculated beyond batch data
to stabilize the training process. However, calculating class
centroids in the full dataset costs time and computation
resources. To make a trade-off between training stability and
resource consumption, instead of updating centroids after
the training of each batch, we estimate the centroids at the
beginning of every epoch and keep them fixed in memory
for the duration of the whole epoch.

4.3 Multi-View Classifier Module
4.3.1 Single-View Uncertainty From EDL
There are two kinds of uncertainty: epistemic uncertainty,
also called model uncertainty, results from limited knowl-
edge; aleatoric uncertainty, also named data uncertainty, is
the noise inherent from class overlap. For instance, samples
distributed in the blurry class boundary have high aleatoric
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Algorithm 1: Uncertainty-guided class imbalance
learning framework (UCLSED) for imbalanced social
event detection.

Input: Imbalanced event dataset X with corresponding
labels Y = {1, 2, ..., C}, maximal epoch number
E, views v ∈ {co-hashtag, co-entity, co-user}, the
number of GNN layers L, and the number of
mini-batches B

Output: Parameters of the GNN encoder model f(θ),
view-specific prototypes pvc , c ∈ {1, 2, ..., C},
parameters of the view-specific classifiers gv(θ)

1 for v ∈ {co-hashtag, co-entity, co-user} do
2 construct view-specific message graph Gv as [21]

3 Initialize the parameters f(θ) and gv(θ), initialize the
view-specific prototypes pvc , c ∈ {1, 2, ..., C}, initialize
the per-class uncertainty [u1, u2, ..., uC ] as
[1− ϵ, 1− ϵ, ..., 1− ϵ], where ϵ is a small value.

4 for e = 1, 2, ..., E do
5 for b = 1, 2, ..., B do
6 Sample a mini-batch of messages {mb}
7 for v ∈ {co-hashtag, co-entity, co-user} do
8 for l = 1, 2, ..., L do
9 Obtain h

v(l)
i , i∀{mb} via Eq. 2

10 zvi ← h
v(L)
i , i∀{mb}

11 Calculate Lv
UCL via Eq. 7

12 [evi1, e
v
i2, ..., e

v
iC ]← EDL classifier gv

13 Obtain [bvi1, b
v
i2, ..., b

v
iC , u

v
i ] via Eq. 8

14 Obtain [bi1, bi2, ..., biC , ui] via Eq. 9
15 Calculate LError via Eq. 14
16 Calculate LEUC via Eq. 11
17 Calculate LCommon via Eq. 13
18 Calculate LTotal via Eq. 12
19 Update f(θ), gv(θ) and prototypes pvc
20 Update per-class uncertainty [u1, u2, ..., uC ]

uncertainty. This work uses the measured class aleatoric
uncertainty to monitor the class representation status. In-
tuitively, we assume a class with high aleatoric uncertainty
is not well represented and should be emphasized in the
representation adjustment module. In recent years, eviden-
tial deep learning (EDL) has been proposed to estimate
aleatoric uncertainties by directly estimating parameters of
the predictive posterior based on the output of the deep
neural networks [64].

EDL for single-view event detection. Under the frame-
work of Subjective Logic and Dempster-Shafer theory [65],
EDL provides a principled way to jointly model high-order
probabilities for a prediction and model uncertainty for the
overall decision. Specifically, it assumes a Dirichlet distribu-
tion as the conjugate before the Multinomial distribution
to represent the density of class probability assignment.
The belief mass assignment to each event class and the
overall uncertainty mass are determined over the Dirichlet
distribution, and the Dirichlet parameters are induced from
the collected evidence learned by the neural network.

Formally, for each single view v, where v ∈
{co-hashtag, co-entity, co-user}, suppose there are C mutually

exclusive events, the Dirichlet distribution of the i − th
sample αi

v = [αv
i1, α

v
i2, ..., α

v
iC ] is induced from the evidence

ei
v = [evi1, e

v
i2, ..., e

v
iC ] collected from the data with the

relation αv
ic = evic + 1, c ∈ {1, 2, ..., C}. The belief mass

assignment to each event, as well as the overall uncertainty
mass, is computed as follows:

bvic =
evic
Sv
i

, uv
i =

C

Sv
i

, (8)

where Sv
i =

∑C
c=1 e

v
ic + 1 =

∑C
c=1 α

v
ic is referred to as the

Dirichlet strength. Obviously, more evidence ensures less
uncertainty.

4.3.2 Multi-View Uncertainty Via DST
After getting evidence-based single-view opinions, to en-
sure a more robust final result, we combine them to-
gether via Dempster-Shafer theory. The combination rule,
also known as Dempster’s rule, strongly emphasizes the
agreement between multiple views and extracts their com-
mon shared beliefs as the final judgment. Specifically, for
the i − th sample, we need to combine three indepen-
dent sets of mass assignments Mv

i = {{bvic}, uv
i }, where

v ∈ {co-hashtag, co-entity, co-user}. Here we utilize ⊕ to
denote the dempster’s combination rule in combining two
independent views. The detailed calculation is as follows:

Mi = Mv1
i ⊕Mv2

i ,

bic =
1

1− Ti
(bv1ic b

v2
ic + bv1ic u

v2
i + bv2ic u

v1
i ) , ui =

1

1− Ti
uv1
i uv2

i ,

Ti =
∑
j ̸=k

bv1ij b
v2
ik .

(9)
The combination rule can be further extended to the multi-
view case. As the case in this paper, we have three sets of
masses (i.e., masses learned under the three single views:
co-hashtag, co-entity and co-user). The final results can be
obtained sequentially as follows:

Mi = Mv1
i ⊕Mv2

i ⊕Mv3
i , (10)

where v1, v2 and v3 correspond to co-hashtag, co-entity and
co-user views, respectively.

The above procedure describes the calculation of the
uncertainty of each sample in detail. As for the uncertainty
value of each class, we use the average uncertainty values
of all the training samples within that class as its class
uncertainty.

4.3.3 Uncertainty Calibration Method
Though the uncertainty can be modelled directly with EDL
and DST, it may not be well calibrated [66]. Considering
the important role the estimated uncertainty plays, we need
it to be as accurate as possible to reflect the status of
representation learning. We adopt an uncertainty calibration
method to build the correct relationship between accuracy
and uncertainty. This is also inspired by previous calibration
studies [67], [68], which point out that a well-calibrated
model should be confident when its prediction is accurate
and be uncertain when its prediction is inaccurate.

Generally, there are four possible outputs: (1) Accurate
and Certain (AC), (2) Accurate and Uncertain (AU), (3)
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Inaccurate and Certain (IC), and (4) Inaccurate and Uncer-
tain (IU). We propose a calibration method encouraging the
multi-view classifier to output more AC and IU samples.
yi denotes the ground-truth label of sample i while ŷi
denotes the prediction of model. αi is the obtained Dirichlet
parameter. α̃i = yi+(1− yi)⊙αi is the Dirichlet parameters
after removal of the correct evidence for the true class.
Specifically, when the model makes a firm and accurate
prediction (ŷi = yi and max(pi) → 1), we force it to give
a relatively low uncertainty by increasing the total evidence
strength (Si → ∞). When the model predicts falsely, we
force it to give a high uncertainty by making misleading
evidence shrink to zero (α̃i → 1):

LEUC(pi) = λe(−
∑

i∈{ŷi=yi}

max(pi) log (1− C/Si)

+
∑

i∈{ŷi ̸=yi}

KL [D (pi | α̃i) ∥D (pi | 1)]),

λe = min(1.0, e/25),

(11)

where C denotes the total number of event classes. Si repre-
sents the total Dirichlet strength and C/Si is the uncertainty
of sample i. The KL term represents the Kullback-Leibler
divergence between the wrong and uniform evidence dis-
tribution. D(·|·) denotes the multinomial opinions formed
by the Dirichlet parameter. The first term encourages AC
outputs by ensuring more collected evidence, while the
second term tries to give IU outputs by removing all wrong
evidence α̃i. Meanwhile, considering that the learned evi-
dence in the early epochs tends to be inaccurate, we also
adopt an annealing coefficient λe to dynamically adjust the
weight of calibration loss. e denotes the index of the current
epoch. In the initial epoch, the class uncertainty used in the
UCL loss is set to 1− ϵ, where ϵ is a very small value.

Class Uncertainty: Similar to the calculation of esti-
mated class centroids, to make a trade-off between training
stability and resource consumption, we update the class
uncertainty in the full dataset every epoch and keep them
fixed in memory for the duration of the whole epoch. The
class uncertainty is the average uncertainty value of all the
training samples within that class.

4.4 Optimization Objective

The optimization objective includes loss from the repre-
sentation adjustment module and loss from the multi-view
classifier module, termed as:

LTotal = LError + λ1LEUC + λ2Lv
UCL + λ3LCommon

v ∈ {co-hashtag, co-entity, co-user},
(12)

where λ1, λ2 and λ3 are hyper-parameters. The latter two
terms are in the representation module. Specifically, Lv

UCL

is the proposed uncertainty-guided contrastive learning loss
which aims to regularize representations in each view.
LCommon is designed to tackle the deficiency of Dempster’s
rule in handling high-conflict data by ensuring the multi-
view commonality. Here we denote the normalized embed-
dings over a batch of training samples from a specific view
as Hv

nor, v ∈ {co-hashtag, co-entity, co-user}. The similarity of

nodes Simv is computed as Hv
nor ·(Hv

nor)
T . LCommon gives

the following constraint:

LCommon =
∥∥∥Simco−hashtag − Simco−entity

∥∥∥2
F

+
∥∥∥Simco−hashtag − Simco−user

∥∥∥2
F

+
∥∥∥Simco−entity − Simco−user

∥∥∥2
F
.

(13)

The former two terms LError and LEUC are from the multi-
view classifier module. Specifically, LEUC is proposed to
calibrate the calculated multi-view uncertainty. LError de-
notes the prediction error loss, integral to the classical cross-
entropy loss function over the learned Dirichlet distribution.

LError =
∑
i

∫  C∑
j=1

−yij log (pij)

 1

B (αi)

C∏
j=1

p
αij−1
ij dpi,

(14)
where yi is the true class distribution. pi is the class assign-
ment probabilities on a simplex and B(·) is the multinomial
beta function.

4.5 Time complexity analysis

The total time complexity of UCLSED is about
O(
∑

v∈V Nv
e ), where V represents the set of views.

Nv
e denotes the total number of edges under the specific

view v. That means the time complexity is approximately
linear with the multi-view graph size. Specifically, as node
features are low-dimensional and Nv

e ≫ N , the propagation
of GNN encoder under all the views (Algorithm 1 lines
8-9) takes O(|V |Ndd′ +

∑
v∈V Nv

e d
′) = O(

∑
v∈V Nv

e ),
where |V | denotes the total number of views. N is the total
number of messages. d and d′ are the input and output
dimensions of the propagation layer. The time complexity
of UCL loss under all the views (Algorithm 1 line 11) can
be roughly estimated as O(|V |NCd′), where C denotes the
total number of classes. As for the EDL neural network
(Algorithm 1 line 12), its time complexity under all the views
is about O(|V |Nd′C). Additionally, it takes O(|V |NC) to
calculate the view-specific uncertainty (Algorithm 1 line 13),
O(|V − 1|N(C +1)2) to multi-view uncertainty (Algorithm
1 line 14), O(NC) to LEUC and LError (Algorithm 1 line 15
and line 16), and O(|V |(|V | − 1)

∑B
b=1 |mb|2d′) to LCommon

(Algorithm 1 line 17), where |mb| denotes the batch size
and B is the number of mini-batches. Similar to UCLSED,
the total time complexity of UCL-ECSED is also about
O(
∑

v∈V Nv
e ). The only difference lies in the additional

O(Nd′) taken to calculate those prototypes, which can be
neglected.

5 EXPERIMENTS

5.1 Experimental Setup

5.1.1 Datasets and evaluation metric
We conduct experiments on three imbalanced social
event datasets: Events2012 100, Events2018 100, and Cri-
sisLexT 7. The former two datasets are sampled from
Events2012 [69] and Events2018 [70], respectively. Consid-
ering that events in the original Events2012 and Events2018
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Fig. 3: Detailed dataset statistics. (a), (b) and (c) show the number of messages per event on Events2012-100, Events2018-100, and
CrisisLexT-7, respectively.

datasets are with different frequencies, to reconstruct
datasets following long-tail distribution, we select 100
events and reorder them based on the number of tweets
each event contains. The final Events2012 100 consists of
15019 tweets relating to 100 events. With maximally 2377
tweets and minimally 55 tweets per event, the imbalance
ratio is about 43. Similarly, the final Events2018 100 contains
a total number of 19944 tweets. With maximally 4189 tweets
and minimally 27 tweets per event, its imbalance ratio is
about 155. CrisisLexT 7 is sampled from CrisisLexT-26 [71],
a balanced dataset containing 26 crisis events in multiple
languages. Here we only select crisis events in English.
Meanwhile, to ensure the long-tail distribution of the recon-
structed CrisisLexT 7 dataset, we calculate the number of
each event based on the exponential function: ni = nmaxγ

i,
where i is the event class index. γ is set to 0.5 in our
experiments. With maximally 989 tweets and minimally 15
tweets per event, the imbalance ratio of CrisisLexT 7 is
about 66. More details are shown in Fig. 3.

The statistics mentioned above depict the datasets for
training. Generally, an imbalanced training set, balanced
validation, and test sets should be provided to obtain a
more fair and accurate model evaluation for the long-tail
recognition task. Thus, for the validation and test sets in our
experiments, we select additional 20 and 30 tweets for each
event, respectively. As for evaluation metrics, we simply
choose the two commonly used metrics in classification
tasks: Accuracy (ACC) and F1 value (F1).

5.1.2 Our proposed algorithm

According to how we learn and update the class prototypes,
our uncertainty-guided class imbalance learning framework
has the following variants: (1) UCLSED, which automati-
cally learns the parameters of class prototypes and updates
them every batch; (2) UCL-ECSED, which uses the global
class centroids as class prototypes and updates them every
epoch. Please refer to Sec. 4.2.2 for more details.

5.1.3 Baselines

To verify the effectiveness of our proposed UCLSED and
UCL-ECSED in detecting events from severely imbalanced
datasets, we compare our methods with state-of-the-art
techniques in the social event detection domain. Further-
more, to demonstrate the superiority of the proposed UCL
loss in learning distinguishable representations for imbal-
anced datasets, we also compare our method with existing

TABLE 1: Dataset details under different views.

View
Num of correct edges/Num of all edges

Events2012 100 Events2018 100 CrisisLexT 7

co-hashtag 0.7355 0.8572 0.8778

co-entity 0.1976 0.6026 0.9257

co-user 0.8847 0.7030 0.8707

all 0.2323 0.7234 0.9121

benchmark methods in long-tail recognition tasks. Overall,
the selected baselines are listed in the following two groups.

Social event detection methods: The selected social
event detection baselines are pre-trained language mod-
els: (1) Word2Vec [41] - we leverage the pre-trained word
embeddings to get the message vectors and adopt a two-
layer neural network to classify them; (2) BERT [42] - we
finetune it on our datasets and make the final classifica-
tion. Topic models: (3) TwitterLDA [71] obtains message
representations by learning topic and word distributions.
GNN-based models: (4) PP-GCN [37], which first builds
a weighted adjacent matrix by measuring event similarity,
then leverages a graph convolutional network trained by
pair-wise sampling to obtain discriminate message rep-
resentations; (5) KPGNN [38], which connects messages
sharing common elements, then uses a multi-head graph
attention network to learn message representations; (6)
MVGAN [24], which learns message representations from
both semantic and temporal views and uses an attention
mechanism to fuse them; (7) ETGNN [21], which learns
message vectors from co-hashtag, co-entity and co-user views
and uses Dempster–Shafer theory to combine them.

Long-tail recognition methods: We also compare our
methods with several long-tail recognition methods. Note
that (1) CE (i.e., Cross-Entropy) is the vanilla baseline, using
the cross-entropy loss to train our multi-view framework.
Other baselines include loss manipulation methods: (2)
CB+Focal [7] (i.e., Class-Balanced Focal loss), which com-
bines a re-weighting scheme with the original focal loss
by assigning weights to different classes based on their
sample numbers; (3) LDAM loss [57], which enforces class-
dependent margins based on class frequencies; long-tail
representation improvement methods: (4) Hybrid-PSC [17],
which is a hybrid framework with a supervised contrastive
learning branch for representation regularization and a
classifier branch for bias elimination; (5) BCL [19], which
further improves the original supervised contrastive learn-
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TABLE 2: Comparison with social event detection methods.

Methods
Events2012 100 Events2018 100 CrisisLexT 7

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

TwitterLDA [25] 9.37±.44 8.27±.49 6.90±.51 4.83±.60 31.90±.5322.59±.58

Word2Vec [41] 74.67±.5674.89±.5935.17±.4233.89±.4144.29±.5437.80±.57

BERT [42] 79.11±.3879.28±.4656.39±.5754.07±.6169.43±.7066.29±.67

PP-GCN [37] 63.33±.3454.62±.2570.00±.3950.99±.4673.33±.5368.71±.44

KPGNN [38] 73.33±.2659.08±.3376.67±.3861.90±.4175.67±.5271.11±.60

MVGNN [24] 81.83±.2982.14±.3169.93±.4268.17±.4771.90±.4970.55±.57

ETGNN [21] 86.45±.2386.56±.2760.43±.3160.12±.3376.67±.4274.30±.50

UCLSED 92.21±.3092.01±.3578.16±.3778.77±.4180.81±.6080.67±.62

UCL-ECSED 93.18±.2093.27±.2978.91±.2579.11±.2984.33±.41 83.96±53

ing by considering class averaging and class complement;
(6) DRO-LT [20], which builds on distributional robustness
optimization and explicitly seeks to improve the quality of
representations for tail classes; (7) TSC [18], which uses pre-
defined features to guide representation learning.

5.1.4 Experimental Settings and Implementations
The proposed UCLSED framework combines the backbone
model ETGNN [21] with an additional representation ad-
justment module and a multi-view classifier module with an
improved uncertainty calibration method. We set the batch
size to 1500, the layer of temporal-aware GNN to 2, and the
dimensions of the first and second GNN layers to 256. As
for the representation adjustment module, we set β in the
UCL and UCL-EC to 0.1. Each EDL classifier is designed
as a two-layer neural network with an activation layer
ReLU in the multi-view classifier module. The hidden layer
dimension of EDL is 128. As for those hyper-parameters in
the total optimization objective function, we set λ1, which
controls the intensities of uncertainty calibration, to 1, λ2,
which controls UCL to 0.1, and λ3 which ensures multi-view
commonality to 0.5. The framework is trained using Adam
optimizer with the learning rate 0.001. The maximal training
epoch is 100. Experiments are implemented in Python 3.8
and Pytorch 1.9 and conducted on 8×GeForce RTX 3090
GPU. To avoid the one-time occasionality, in comparison
experiments, we perform 10 tests for all models and record
the mean and standard deviation values.

5.2 Results and Comparisons
5.2.1 Comparison with social event detection methods
We first compare our approaches with 7 competitive social
event detection methods and report results in Table 2.
By carefully analyzing the results, we have the following
observations: (1) Our proposed model (i.e., UCL-ECSED)
achieves state-of-the-art performance on all three imbal-
anced datasets. On Events2018 100, UCL-ECSED even sur-
passes ETGNN by about 19%. Because our models capture
the view-specific reliability better by adding the additional
uncertainty calibration method and therefore, make up for
the shortcomings of ETGNN in handling data whose most
views are noisy. (2) We also noticed that the results of those
GNN-based baselines vary greatly on different datasets and
ETGNN has difficulty in handling datasets whose views are

TABLE 3: Comparison with long-tail recognition methods.

Methods
Events2012 100 Events2018 100 CrisisLexT 7

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

CE 85.77±.2685.88±.3073.73±.3574.00±.3874.76±.4372.31±.49

CB+Focal [7] 87.67±.4086.84±.4375.57±.3775.23±.4675.24±.5374.95±.66

LDAM [57] 89.83±.2989.95±.2477.30±.3678.14±.4476.84±.4976.61±.42

Hybrid-PSC [17]88.57±.2688.65±.3376.87±.3976.60±.4778.10±.4376.20±.52

BCL [19] 90.83±.3490.98±.3777.33±.2478.16±.2681.90±.4781.32±.45

DRO-LT [20] 89.43±.2889.42±.2577.07±.3477.52±.4078.86±.4578.30±.53

TSC [18] 90.33±.2490.80±.2677.40±.3578.33±.3681.43±.4280.58±.48

UCLSED 92.21±.3092.01±.3578.16±.3778.77±.4180.81±.6080.67±.62

+CB 92.83±.3592.80±.3878.70±.4578.97±.5081.57±.6881.25±.74

UCL-ECSED 93.18±.2093.27±.2978.91±.2579.11±.2984.33±.4183.96±.53

+CB 93.67±.3193.66±.3679.33±.4279.27±.4184.60±.5184.24±.58

noisy. For example, on Events2012 100, ETGNN achieves
a remarkable accuracy improvement of 13.12% compared
with KPGNN. While on Events2018 100, KPGNN has a
relative improvement of 16.24% compared with ETGNN.
The connection qualities of the constructed social graphs
determine this. Here we depict the detailed connection
qualities in Table 1. Note that edges under the view “all”
are the union of edges under the above three single views.
In KPGNN, information is propagated and aggregated over
a homogeneous message graph constructed under the “all”
view. While in ETGNN, representations of three single
views are learned independently, and the obtained view-
specific results are further combined via Dempster-Shafer
theory to get the final decision. As shown in Table 1, on
Events2012 100, the connection quality of the co-entity view
is quite low, which also leads to the low quality of the
“all” view. Therefore, KPGNN performs badly. Meanwhile,
considering most views (i.e., co-hashtag and co-user) are of
relatively high quality, ETGNN can still obtain trusted re-
sults by combining multi-view results via Dempster-Shafer
theory. However, on Events2018 100, the connection quali-
ties under most views (i.e., co-entity and co-user) are not that
good. Meanwhile, the estimated uncertainty from ETGNN is
not well calibrated. Therefore, ETGNN performs poorly. To
sum up, with the help of the UCL loss, our models are aware
of the per-class representation status during training and
make timely adjustments to their boundaries. More analysis
of the UCL and UCL-EC losses will be made later.

5.2.2 Comparison with long-tail recognition methods

Note that this work focuses on social event detection in
imbalanced data. The proposed UCL method aims to en-
hance the generalization capacity by regularizing the rep-
resentation learning. Thus, we also compare our methods
with the vanilla CE baseline and six state-of-the-art long-tail
recognition methods, especially with those long-tail repre-
sentation improvement methods. The results are presented
in Table 3. Our UCL-ECSED consistently outperforms all the
baselines on all three datasets, emphasizing the superiority
of enforcing margins in the feature space under the guidance
of per-class uncertainty.
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Fig. 4: Average per-class accuracy and F1 value of the certain, middle, and uncertain groups.

We here analyze the experimental results in detail. As
seen from Table 3, CE performs worst among all the base-
lines. This is due to the limitation of the original cross-
entropy loss in handling imbalanced data. To deal with
the imbalanced data distribution, CB+Focal manipulates the
focal loss by assigning more weights to classes with less
effective samples. As a loss re-weighting method, CB+Focal
slightly improves the detection results. LDAM is also a
loss manipulation method. Instead of modifying per-class
weight, it sets different logit margins for different classes
based on frequency. LDAM obtains a relatively good per-
formance. This method focuses on improving the output
layer of the final classifier while the remaining methods
consider improving the output layer of the GNN model.
In Table 3, Hybrid-PSC, which applies prototypical su-
pervised contrastive loss to learn distinguishable features,
outperforms the CE counterpart. For example, on ACC,
Hybrid-PSC outperforms CE by 2.8%, 3.14%, and 3.34%
on Events2012 100, Events2018 100, and CrisisLexT 7, re-
spectively. This validates the idea that better representation
can help distinguish event classes. We also noticed that
other methods that tailor the contrastive learning loss for
imbalanced datasets achieve better results than Hybrid-PSC.
For example, TSC pre-computes a set of targets uniformly
to ensure data balance. However, it is not flexible enough
as it has no ability to make proper adjustments for different
classes. DRO-LT extends prototypical contrastive learning
by introducing distributional robustness. It learns separable
per-class representation by pushing and pulling towards a
worst-case possible distribution. BCL is also a representa-
tion improvement method that applies contrastive learning.
It implements class-averaging and class-complement to the
original contrastive learning loss to enhance representation
learning. Table 3 shows a significant performance boost
when comparing the tailored BCL with Hybrid-PSC. DRO-
LT and BCL methods are tailored for imbalanced data un-
der frequency guidance. However, as observed from Fig 1,
evidential uncertainty is a better indicator of model general-
ization capacity than class frequency. We, therefore, enforce
larger margins for uncertain classes during representation
learning. The result that our UCL-ECSED surpasses all
the baselines validates the superiority of our uncertainty-
guided learning.

For a more fine-grained understanding, we also split
all the labels into three groups based on their measured
per-class uncertainties and plot the final group results
in Fig. 4. Concretely, we divide all uncertainty values

into three intervals. Assume the maximal and minimal
class uncertainty values are denoted as Umax and Umin,
classes whose uncertainty values are within [Umin, Umin +
1/3(Umax − Umin)] are split into certain classes. Classes
within [Umin+1/3(Umax−Umin), Umin+2/3(Umax−Umin)]
are middle and the rest are uncertain. Fig. 4 reveals that
our UCL-ECSED achieves a large gain on the uncertain
group without sacrificing the detection performances on the
certain and middle groups. This further demonstrates the
robustness of our model. Adding proper uncertainty-guided
margins during training makes class representations in all
groups more separable. Besides, it is observed that UCL-
ECSED performs even better than UCLSED. We argue this
is due to the gap in sample distribution in different batches.

Remark: unlike most classical long-tail recognition meth-
ods that directly act on the classifier (e.g., re-weighting
strategies), our work tends to solve the imbalance problem
by manipulating the latent feature space. By ensuring the
learned representations of minority event classes are well-
separated from other event classes, it becomes much easier
to recognize them. Our methods work differently from
classical methods, which means they are parallel and may
complement each other. To validate this opinion, we here
further incorporate the re-weighting strategy (i.e., CB in [7])
into the classification Error loss LError of our framework
and record the results. Encouragingly, the performance gets
further improved. For example, UCL-ECSED + CB gets a
further 0.49% improvement on ACC on Events2012 100.

5.3 Representation Visualization
To make a better analysis of representations learned by
baselines (CE, Hybrid-PSC, BCL) and our model (UCL-
ECSED), in Fig. 5, we plot the t-SNE results of eight ran-
domly selected events of co-entity view on Events2012 100.
Obviously, the boundary learned by our model is less
blurry compared to other baselines. Compared to Hybrid-
PSC which adopts the original PSC, the class overlapping
problem gets well alleviated by our work. To further demon-
strate the extent to which our UCL loss helps adjust a clear
separable boundary in the latent space, we also visualize the
mean intra-class similarity distribution and mean inter-class
similarity distribution of samples in certain, middle and
uncertain groups on the Events2012 100 dataset. The results
are plotted in Fig. 6. Note that the dark area represents
intra-class cosine similarities while the light color represents
inter-class ones. As can be observed, the representations of
UCL-ECSED are the best for all three groups (uncertain,
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(a) CE (co-entity) (b) Hybrid-PSC (co-entity) (c) BCL (co-entity) (d) UCL-ECSED (co-entity)

Fig. 5: t-SNE visualization of the learned features of co-entity view on Events2012 100. Here we randomly select 8 events which
are drawn in different colors.

Fig. 6: Visualization of mean intra-class and inter-class cosine similarity distribution of co-entity view on Events2012 100. Dark
color area indicates intra-class similarities while light color area indicates inter-class ones. Uncertain, middle, and certain classes
are plotted separately. Average inter-class cosine similarity and average intra-class similarity of the uncertain group are marked
with dashed green vertical lines.

middle, and certain) under all three views. The inter-class
similarity of UCL-ECSED gets lower compared to the com-
petitive baseline - BCL, which is attributed to the added
uncertainty-guided margin in the UCL loss. By adding a
tunable margin, UCL pushes the distribution of other classes
away from uncertain classes and, therefore, gets more sepa-
rable representations. Consistent with the results in Table 3,
representations learned by CE are the worst. Their intra-
class similarities and inter-class similarities under all three
views are closest. Compared to CE, Hybrid-PSC decreases
the inter-class similarities significantly, owing to the ability
of contrastive learning to push inter-class samples away.
Similar to Hybrid-PSC, BCL decreases inter-class similari-
ties, especially for uncertain samples. We argue that may be
because tail classes are more likely to be uncertain classes.
BCL has a stronger ability to deal with tail classes thanks to
its class-averaging and class-compensation strategies. Thus
BCL also performs well in uncertain classes.

5.4 Uncertainty Analysis

In this section, we conduct experiments to validate that
the estimated uncertainty is highly correlated to the model
performance and therefore, is a good indicator to adjust
representation distribution. We here visualize the estimated
uncertainty of the true and false predictions in the validation
set. The results are drawn in Fig. 7. Obviously, on all three
datasets, higher uncertainties are usually estimated for those
false predictions while lower uncertainties are more likely
to belong to those true predictions. This observation implies
the effectiveness of using estimated uncertainty to indicate
the status of representation learning since the estimated
uncertainty is correlated to the prediction performance.

5.5 Hyper-parameter Sensitivity
In this section, we study the sensitivities of parameters
λ1, λ2 and λ3 in the optimization objective function (i.e.,
Eq. 12). Due to the page limit, we only plot the results on
Events2012 100 in Fig. 8.

5.5.1 Analysis of coefficient λ1.
The hyper-parameter λ1 in Eq. 12 controls how accurate the
estimated uncertainty is. We vary it from 0.001 to 10. The
results are shown in Fig. 8(a). With the increase of λ1, the
performance rises first. Because the uncertainty calibration
loss helps in both classification and representation adjust-
ment modules. By forcing wrong evidence to shrink to zero
and highlighting those correct parts, it assists the learning
of EDL neural networks. Meanwhile, more accurate un-
certainty estimation helps adjust representation. However,
the result drops rapidly when λ1 reaches a relatively large
value. Because too much emphasis is placed on eliminating
wrong evidence in early training. In early epochs, misclassi-
fied samples are dominant. A large λ1 may cause premature
convergence to the uniform distribution, thus preventing
the model from classifying correctly.

5.5.2 Analysis of coefficient λ2.
The hyper-parameter λ2 in Eq. 12 controls the impact of the
representation adjustment module, which intends for the
GNN model to learn separable features. We vary it from
0.001 to 10. The results are shown in Fig. 8(b). Similarly, as
λ2 becomes larger, the accuracy scores increase first and then
decrease. Because in this work, instead of measuring the
quality of the learned representations, the selected metrics
in fact focus on the classification results. Though better
representation helps better classification. The overwhelming
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Fig. 7: Visualization of uncertainty distribution on Events2012 100, Events2018 100, and CrisisLexT 7.

Fig. 8: Hyper-parameter sensitivity analysis.

emphasis on representation may lead to the under-learning
of classifiers.

5.5.3 Analysis of coefficient λ3.
The hyper-parameter λ3 in Eq. 12 controls the consistency
constraint on the three similarity matrices under different
views. We vary it from 0.01 to 100. As shown in Fig. 8(c),
the performance of our proposed framework is not very
sensitive to λ3 when it is within a reasonable range.

5.6 Ablation Study
In this section, we conduct quantitative ablation studies to
analyze the components of our model. We record the results
on Event2012 100 in Table 4 for illustration purposes.

5.6.1 Ablation study on the UCL and UCL-EC loss.
We argue that our work’s proposed uncertainty-guided con-
trastive learning losses (i.e., UCL and UCL-EC) are expected
to learn better features for imbalanced datasets, leading
to better detection performance. To verify it, in the two
proposed models UCLSED and UCL-ECSED, we replace
UCL and UCL-EC with their vanilla versions which re-
move the uncertainty-guided margins. As shown in Table 4,
without the uncertainty-guided margin, the results have a
drop. To make a more careful comparison, we also add a
fixed margin (i.e., the +m strategy) to PSC and PSC-EC
and report the results. When adding a fixed margin, the
results are slightly better than those of the vanilla version
losses but worse than uncertainty-guided ones. This further
demonstrates the superiority of UCL and UCL-EC in learn-
ing separable representation. What’s more, to demonstrate
the superiority of our uncertainty-related approach, we
also compare our methods with the baseline adopting the
+dm strategy but removing the uncertainty-related parts
(i.e., the calibration part in the classification head and the

TABLE 4: Ablation studies of proposed models on
Events2012 100. The check mark indicates which losses are ap-
plied in the framework. Lv

PSC denotes the original Prototypical
Supervised Contrastive loss. +m means adding a fixed margin
in the original PSC loss (introduced in Sec. 3.3 and Sec. 4.2.1).
Similarly, +dm means adding a dynamic margin controlled by
the per-class error rate of the training set in each epoch. The
superscript v (i.e., v in Lv

UCL, Lv
PSC , Lv

UCL−EC and Lv
PSC−EC )

denotes the three views, v ∈ {co-hashtag, co-entity, co-user}.

Methods Lv
UCL Lv

PSC +m +dm LEUC ACC F1
UCLSED ! ! 0.9221 0.9201
UCLSED ! ! 0.8825 0.8838
UCLSED ! ! ! 0.8957 0.8955
UCLSED ! ! 0.9073 0.9056
UCLSED ! 0.8193 0.8179

Lv
UCL−EC Lv

PSC−EC +m +dm LEUC ACC F1
UCL-ECSED ! ! 0.9318 0.9327
UCL-ECSED ! ! 0.8910 0.8900
UCL-ECSED ! ! ! 0.8983 0.8975
UCL-ECSED ! ! 0.9183 0.9145
UCL-ECSED ! 0.8230 0.8300

uncertainty adjustment part in the representation head) in
the whole framework. In this baseline, the per-class error
rate of the training set is used to adjust representation.
As demonstrated in Table 4, it gets a great result while
still worse than our uncertainty approach. Furthermore, in
comparison to this baseline, our framework offers enhanced
interpretability and reliability. It achieves this by providing
uncertainty values during the prediction process.

5.6.2 Ablation study on the uncertainty calibration method
The uncertainty calibration method (i.e., LEUC ) is quite im-
portant to our model. As can be seen in Table 4, if we remove
LEUC , the detection results have a significant decrease. For
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TABLE 5: Time consumption. The table records the per-epoch
running time of model training in seconds.

Dataset

UCLSED

Time

UCL-ECSED

Time
Events2012 100 122.28 135.43
Events2018 100 109.23 111.77

CrisisLexT 7 3.31 3.35

example, on ACC, the result of UCLSED has a 10.28% drop.
We argue that uncertainty is important in the representation
adjustment and multi-view classifier modules. We use per-
class uncertainty in the representation module to set a
margin for each class. In the classifier module, we utilize
the view-specific uncertainty of each sample to make the
multi-view combination and obtain the final result. Thus,
we need the estimated uncertainty to be as accurate as
possible, which makes the uncertainty calibration method
indispensable.

5.7 Time consumption
We record the time consumption information of UCLSED

and UCL-ECSED in Table 5. As can be observed, overall,
the per-epoch training time of UCLSED and UCL-ECSED is
comparable, with UCLSED taking slightly less time than the
latter. This is consistent with the time complexity analysis in
Sec. 4.5. Compared to UCLSED, in each epoch, UCL-ECSED

needs extra calculation to update those prototypes.

6 CONCLUSION AND FUTURE WORK

This paper proposes a novel uncertainty-guided class im-
balance learning framework, namely UCLSED, and its
variant - UCL-ECSED, for imbalanced SED tasks. As a
label-dependent representation regularization technique,
the UCLSED aims to improve the model generalization ca-
pability by enhancing representation learning for all classes,
especially for those uncertain ones. Specifically, we design
a novel uncertainty-guided contrastive learning loss that
assigns larger margins for those more uncertain classes
to manipulate separable representation boundaries. Mean-
while, we propose a multi-view combination architecture
with an additional calibration method to ensure accurate
and robust uncertainty estimation. The final detection result
is combined via Dempster-Shafer theory under the supervi-
sion of uncertainty calibration. Experimental results verify
the superiority of our model.

However, there are also some limitations. Both UCLSED

and UCL-ECSED learn only one single prototype for each
class, which makes them insufficient to handle complicated
classes that follow a multimodal distribution. We leave the
extension to multiple prototypes as future work.
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